Mathematical modelling of tumour acidity: regulation of intracellular pH.

نویسندگان

  • S D Webb
  • J A Sherratt
  • R G Fish
چکیده

Measurements of extracellular pH (pHe) in vivo have shown that the microenvironment in tumours is more acidic than in normal tissue. However, both human and animal tumour cells have been shown to have an intracellular pH (pHi) on the alkaline side of neutrality (pH 7.1-7.2). This gives rise to a reversed pH gradient between tumours and normal tissue which implies that cells within solid tumours are capable of maintaining their level of pHi at physiological levels, despite lower than normal levels of pHe. In this paper the authors describe a mathematical model that provides a possible explanation for the altered pH gradient observed in tumours. The authors examine the influence of changes in the microenvironment on the activity of several membrane based ion transport systems. Using qualitative analysis the authors show that the pHi of tumour cells is less sensitive to external pH than for normal cells, because of their increased reliance on the inefficient glycolytic pathway for energy production. It is shown that under aerobic conditions the lactate-/H+ symporter could be the most active exchanger in the regulation of pHi in tumour cells. However, under more hypoxic conditions lactate extrusion is reduced, and so this exchanger has little effect on resting pHi in these regions. The authors also consider an extended model which incorporates the transfer of acids from the cytosol into acidic organelles. The model demonstrates that one of the major factors involved in the maintenance of cytosolic pH to physiological levels, despite an acidic extracellular pH in hypoxic areas of tumour tissue (median, 6.9-7.0), is enhanced sequestration of cytosolic protons into acidic cellular vesicles such as endoplasmic reticulum, golgi, endosomes, and lysosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumour-stromal interactions in acid-mediated invasion: a mathematical model.

It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explore...

متن کامل

Leaky vessels as a potential source of stromal acidification in tumours.

Malignant tumours are characterised by higher rates of acid production and a lower extracellular pH than normal tissues. Previous mathematical modelling has indicated that the tumour-derived production of acid leads to a gradient of low pH in the interior of the tumour extending to a normal pH in the peritumoural tissue. This paper uses mathematical modelling to examine the potential of leaky v...

متن کامل

Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy.

One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proli...

متن کامل

Hypoxia-induced mobilization of NHE6 to the plasma membrane triggers endosome hyperacidification and chemoresistance

The pH-dependent partitioning of chemotherapeutic drugs is a fundamental yet understudied drug distribution mechanism that may underlie the low success rates of current approaches to counter multidrug resistance (MDR). This mechanism is influenced by the hypoxic tumour microenvironment and results in selective trapping of weakly basic drugs into acidified compartments such as the extracellular ...

متن کامل

The role of acidity in solid tumour growth and invasion.

Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a number of different behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 196 2  شماره 

صفحات  -

تاریخ انتشار 1999